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1 PREFACE 
 

Common GIS are not offering approxima-
tion of partial derivatives of the 3rd order. High 
quality partial derivatives of the 3rd order are 
crucial for computing morphometrical variab-
les of the 3rd order widely used in geomor-
phometry. For the requirements of Geomor-
phologic Information System (GmIS) was in 
PACINA (2008) implemented a robust algo-
rithm for approximation of partial derivatives 
up to the 3rd order with sufficient quality. This 
article is focused on testing the accuracy of dif-
ferent methods for approximation of partial de-
rivatives. 

Approximated partial derivatives by method 
described in PACINA (2008), JENČO et al. 
(2009) and PACINA (2009a) are used for com-
putation of derived morphometrical variables 
up to the 3rd order. Surfaces of derived mor-
phometrical variables of different orders are 
further on used for automatic delimitation of 
elementary forms of georelief (PACINA 2008, 
PACINA 2009a, PACINA 2009b and PACINA 
and JENČO 2009).  

This algorithm is approximating the partial 
derivatives from 5x5 neighbourhood by gene-
ral polynomial of the 3rd order1, using the 
weighted least square method. For the least 
square method were proposed and tested two 
different weights. Into the process of testing 
were included methods for approximation of 
partial derivatives of the 3rd order (based on 
non-weighted least square method) presented 
by FLORINSKY (2009), and standard methods 
available in common GIS. 

A polynomial function with variables of to-
pographical surface was chosen for the com-
parison of results. From this polynomial func-
tion we can compute absolutely precise partial 
derivatives which are further used as the eta-
lon. 

The accuracy of approximation of the 1st 
and the 2nd derivatives was tested only by vi-
sual control and comparison of isolines, be-
cause this approximation is implemented in 
most of commonly used GIS. The test of ap-
proximation accuracy of the partial derivatives 
of the 3rd order is based on analysing the diffe-
rences between the etalon and the computed 
derivatives. For the comparison of these differ-
ences were used four statistical indicators. 

 
2 TESTED  METHODS 

 
This article is focused on the accuracy of 

the 3rd derivative approximation. The imple-
mented method for the 3rd order partial deriva-
tive is producing the 1st and the 2nd partial de-
rivatives as well. These results are tested only 
by visual comparison of isolines.  

 
2.1 METHODS  BASED  ON  SPLINES 

 
Very powerful and accurate method for 

computing partial derivatives2 is a method cal-
led regularized spline under tension (RST). By 
constructing the spline surface is the whole 
area divided into segments. For each of the 
segments of the spline surface is computed pa-
rametrical expression. By deriving the para-
metrical expression we get the partial deriva-
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tives in the direction of x and y. The RST com-
putation is implemented for instance in GIS 
GRASS. With the use of the RST interpolation, 
we can get only the first and the second order 
partial derivatives. For more information about 
RST see MITÁŠ and MITÁŠOVÁ (1988) and  
MITÁŠOVÁ and MITÁŠ (1993). 

In this case was the RST interpolation ap-
plied on the regular grid (Fig. 2) computed by 
the polynomial (3.1). The input points were re-
interpolated using interpolation parameters to 
preserve the original input surface structure.  

 
2.2 METHODS  BASED  ON  APPROXIMATING  

POLYNOMIAL 
 

Using these methods, we approximate data 
on the grid by the polynomial function. The 
approximate derivatives of data on the grid are 
computed by derivation of the polynomial 
function. The order of used polynomial may 
not to be lower than the order of computed de-
rivative. 

This method based on derivation of interpo-
lation polynomial is very common in GIS. He-
re we compute the derivation of interpolation 
polynomial just by computing the differences 
of the neighbouring cells and divided by their 
distance. This method can compute partial de-
rivatives of any order just by applying the same 
computation over and over again. From the de-
rivative of the 1st order, we can compute de-
rivative of the 2nd order in the same way as the 
1st order derivative. This method is very unsta-
ble for computing partial derivatives of higher 
orders and therefore is successfully used only 
for approximation of the 1st and 2nd partial de-
rivatives. 

Approximation based on general polyno-
mial of the 2nd order is shown in CHAPLOT et 
al. (2006) or MENTLÍK et al. (2006). Polyno-
mial (2.2.1) is used for the approximation of 
the 1st and the 2nd partial derivative. 

(2.2.1) 

We will estimate the approximation from 
the 3x3 neighborhood. Polynomial (2.2.1) has 
only six coefficients, therefore the weighted 
least square method must be applied. We con-
sider that the highest weight has the point in 
the centre of the 3x3 neighborhood and points 
further from the center have less influence on 

the computed partial derivative. For estimating 
the partial derivatives of the 3rd order, we need 
to use the polynomial of the 3rd order. 

 
2.3 APPROXIMATION  BASED  ON  GENERAL 

POLYNOMIAL  OF  THE  3RD ORDER 
 

We will approximate the input data by a 
general polynomial of the 3rd order: 
(2.3.1) 

We will use the 5x5 neighbourhood of actu-
ally computed point. Let us mark the coordi-
nates of the centre of the 5x5 neighbourhood in 
which we will approximate the derivatives (xi, 
yj). On Figure 1 are shown the nods of the 5x5 
neighbourhood. Symbols f in each of the nods 
represents function values in the nod. Value h 
is distance between the nods. 

2.3.1  Estimation of derivatives 
 

Let us estimate derivatives of the polyno-
mial in the point (xi, yj). Then z(xi, yj) = a0. 
Partial derivative of z by x will then be: 

(2.3.2) 

———————– 
1 For example the morphometrical variables of the 3rd order: agn  – change of orientation change in the direc-

tion of a fall line, ANtt – change of orientation in the direction of a contour line 
2 RST is primarily used for interpolating an elevation grid from elevation data 

Fig. 1 Nods of the 5x5 neighbourhood 
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From which results: 

And the other derivatives: 

(2.3.4) 

 
2.3.2   Estimation  of  the  derivatives  

coefficients  
 

We interleave the polynomial (2.3.1) across 
25 nods (5x5 neighbourhood), but the polyno-
mial (2.3.1) has got only ten coefficients, so we 
use the least squares method. To encounter the 
higher influence of points closer to the center 
of approximate area, we will use the weighted 
least square method. 

where wi,j is the weight of xi,yj point, fk,l is 
value in the nod and z(xi,yj) is the function va-
lue of the polynomial (2.3.1) in the point (xi,yj). 

For the right choice of the weight is impor-
tant to take into account the influence of the 
surrounding nods, which should be decreasing 
with the increasing distance from the middle. 
For the computation was used the following 
weight:  

where δ ≥ 0 (for example 0.1), which influ-
ences the importance of the points further from 
the center. 

The system of linear equations for compu-
ting the unknown coefficients can be overesti-
mated hence in general must not have any solu-
tion. We will then estimate the unknown coe-
fficients by the least square method3. 

The unknown coefficients a0,....a9 of the 
polynomial (2.3.1) are given by 

and Bw is computed by this formula. 
 

 

Size of matrix Q is 25 x 10 , size of a is 10 
x 1 (vector of unknown coefficients) and f is  
25 x 1 (vector of the nods). 

The computation made in this way is very 
fast. The matrix is computed only once during 
the first computation. We do not have to com-
pute all the coefficients of, but only those we 
need for computation of the partial derivatives 
of the desired order. The matrix was computed 
analytically (with the help of symbolic compu-
tations in Matlab). This helped to avoid the 
rounding error during computation of matrix, 
which made the computation even more pre-
cise.  

FLORINSKI (2009) introduced similar me-
thod for approximations of partial derivatives 
of the 3rd order based on Taylor approximating 
polynomial and standard least square method 
(without weights). The partial derivatives of 
the 3rd order along FLORINSKI (2009) are 
computed in the following manner: 

(2.3.9) 
where zi  are the values from 5x5 neighbor-

hood and w is the cell size. 
 

3 THE  METHOD  OF  TESTING 
 

The approximation accuracy was tested on a 
testing polynomial function with the character 
of topographical surface. This function was 
formerly used in BENOVÁ (2005). 
(3.1)  

The polynomial (3.1) is designed with the 
following properties: 
•  Graph of the polynomial is a continuous sur-

face. At each point Ai(xi,yi,zi) of this surface 
are continuous partial derivatives up to the 
3rd order.  

•  At each point Ai(xi,yi,zi) it is possible to ex-
press the values of required morphometrical 
variables. 

•  The area must contain at least one saddle 
point and one peak. 
To fulfill the presented requirements for 

values of x and y of the polynomial (3.1) 
should be valid:  

(2.3.3) 

(2.3.7) 

(2.3.6) 

(2.3.8) 

 
(2.3.5) 
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Partial derivatives in the direction of x and y 
up to the 3rd order were computed by the me-
thods described above. As the etalon we use 
the functional values of the particular deriva-
tives in the direction of x and y.  

The accuracy of partial derivatives of the 1st 
and the 2nd order was tested in many other pa-
pers (see MITÁŠ and MITÁŠOVÁ 1988)), we 
will only visually evaluate the isolines of de-
rived morphometrical variables computed from 
these derivations. 

The accuracy of the partial derivatives of 
the 3rd order is tested by evaluating the follo-
wing parameters: 
•  Equivalence rate = In ideal case should the 

resulting value equal 100 %. 

•  Arithmetic average = arithmetic average of 
data differences (etalon vs. computed). 

•  Standard deviation = quadratic average of 
values variation from their arithmetic ave-
rage. For the computation are again used the 
data differences. 

•  RMSE – Root Mean Square Error. 

To make the description of the results easier, 
let entitle the tested methods in the following 
manner: 
•  etalon – partial derivatives approximated u-

sing the functional values of the derivatives 
in the x and y direction, 

•  method_1 – approximation from the RST 
function, 

•  method_2 – neighbourhood differences 
based approximation, 

———————– 
3 For the whole derivation of the weighted least square method see PACINA (2008) 
4 The input surface was transformed into fictional coordinate system for easier processing in GIS GRASS 

and Matlab 

Fig. 2 Testing area - 
polynomial (3.1) 

),300,300(−∈x )600,200(−∈y 4 . 
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•  method_3 – approximation based on the 
polynomial of the 2nd order, 

•  method_4 – approximation based on the 
polynomial of the 3rd order, 

•  method_5 – approximation along FLORINS-
KY (2009). 

 
3.1     TESTING  RESULTS 

 
3.1.1  1st partial  derivatives 

 
The preciseness of partial derivatives of the 

1st order in the direction x and y was tested on 
the morphometrical characteristic of the 1st or-
der – slope (γN). By visual control of γN isolines 
computed by method_2, method_3 and me-
thod_4 was claimed, that all the results are 
identical to the etalon.  

 
3.1.2   2nd partial  derivatives 

 
The accuracy of the partial derivatives of 

the 2nd order was tested using one of the nor-
mal curvatures (KN)n

5 (profile curvature). On 

the Figure 3 is presented the (KN)n  etalon. Re-
sulted surface of (KN)n

 computed by method_2 
and method_3 is very similar to the etalon and 
is not shown in this paper. 

On Figure 4 is  computed by method_1 and 
method_4. At the result of method_4 we see 
the differences from the etalon. This may be 
caused by the approximation method, using the 
5x5 neighbourhood of actually computed cell. 
At the result of method_1 are visible the RST 
interpolation artifacts – deformations along the 
boundary of the testing area. 

 
3.1.3  3rd partial  derivatives 

 
The accuracy of the partial derivatives of 

the 3rd order was tested by the values of the 
equivalence rate of the etalon and the surfaces 
computed by one of the tested methods. Three 
other parameters were used as well – arithmeti-
cal average of differences of these two sur-
faces, standard deviation and RMSE of these 
differences.  

Fig. 3 (KN)n etalon 

———————– 
5 For detailed description of this curvature see KRCHO (1990) or KRCHO (2001) 
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Fig. 4 (K
N )n  com

puted from
 m

ethod_4 and m
ethod_1 
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The computed values of the equivalence 
rate, arithmetical average, standard deviation 
and RMSE are presented in the following ta-
bles. For the method_4 were tested two diffe-
rent weights: 
where ε >0, 

where δ > 0. 

 
In the following Tables 1 – 4 is weight 

(3.1.1) called method_4b and weight (3.1.2) 
method_4a. 

If we compare the values in Tables 1 to 4, 
we my claim that the preciseness of the partial 
derivatives of the 3rd order is for all tested 
methods acceptable. Methods based on the 5x5 
neighbourhood approximation are approxi-
mately two orders more precise then the 
method_2. The results are overall very precise. 

This may be caused by the fact, that the testing 
function is a polynomial – and we approximate 
the polynomial by another polynomial. 

 
4 CONCLUSIONS 

 
In this article were presented and tested 

methods for approximation of the partial de-
rivatives up to the 3rd order. The task of ap-
proximating partial derivatives of the 3rd order 
is very crucial for geomorphometry, as the ap-
proximation is very sensitive to computation 
errors. For this reason was implemented 
method based on approximation of the input 
data by a general polynomial of the 3rd order 
using the 5x5 cell-neighbourhood. This ap-
proximation method uses the weighted least-
square method implemented in Matlab, where 
the possible rounding errors are avoided by the 
analytical computation of matrix Bw (with the 
help of symbolic computations in Matlab). 

The aim of this article was not to test to pre-
ciseness of the 1st and the 2nd partial derivatives 
as many papers have been written on this topic, 
thus we have only visually compared the isoli-
nes of selected morphometrical variables com-

(3.1.1) 

(3.1.2)

Tab.1 Approximation preciseness of δz3/δx3 

Tab. 2 Approximation preciseness of δz3/δy3 

Tab. 3 Approximation preciseness of δz3/δx2 δy 

Tab. 4 Approximation preciseness of δz3/δx2 δy 



32 

Jan Pacina                                                                                 GEOMORPHOLOGIA SLOVACA ET BOHEMICA 1/2010 

puted from partial derivatives approximated by 
the described methods. The accuracy tests were 
focused on the 3rd partial derivatives – here we 
have tested several statistical indicators de-
scribing the differences of the tested surface 
and the etalon. The results have shown that 
methods based on the approximating polyno-
mial of the 3rd order are giving the best results. 
These two methods uses for approximation the 
least square method – the method based on the 
weighted least squares introduced in this article 
is even more precise. 

The further process of testing will be fo-
cused on real terrain data. Here the accuracy of 
partial derivatives will be tested (within the 
GmIS) in the process of automatic delimitation 
and recognition of elementary forms of geore-
lief. The partial derivatives used for computa-
tion of desired morphometrical variables 
(further used for elementary form delimitation) 
will be computed using above described meth-
ods. Then we will test the accuracy of delimi-
ted elementary forms borders. Accuracy test on 
a non-polynomial testing function is suggested 
as well.  
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